63 research outputs found

    The Biomimetic Mineralization Closer to a Real Biomineralization

    Get PDF

    Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC)-coated Si probe

    Get PDF
    Atomic force microscope (AFM) equipped with diamond-like carbon (DLC)-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces

    Single-crystal silver nanowires: Preparation and Surface-enhanced Raman Scattering (SERS) property

    Full text link
    Ordered Ag nanowire arrays with high aspect ratio and high density self-supporting Ag nanowire patterns were successfully prepared using potentiostatic electrodeposition within the confined nanochannels of a commercial porous anodic aluminium oxide (AAO) template. X-ray diffraction and selected area electron diffraction analysis show that the as-synthesized samples have preferred (220) orientation. Transmission electron microscopy and scanning electron microscopy investigation reveal that large-area and ordered Ag nanowire arrays with smooth surface and uniform diameter were synthesized. Surface-enhanced Raman Scattering (SERS) spectra show that the Ag nanowire arrays as substrates have high SERS activity.Comment: 5 pages, 4 figure

    Fabrication of hydrophobic inorganic coatings on natural lotus leaves for nanoimprint stamps

    Full text link
    Hydrophobic inorganic films were obtained by direct deposition of copper or silicon onto natural lotus leaves by ion beam sputtering deposition technique. Scanning electron microscopy observations showed a lotus-leaf-like surface structure of the deposited inorganic films. Hydrophobic nature of the inorganic films on lotus leaves had been improved compared to the inorganic films deposited on flat silicon substrates. Water contact angles measured on the lotus-leaf-like copper and silicon films were 136.3 \pm 8{\deg} and 117.8 \pm 4.4{\deg}, respectively. The hydrophobic lotus-leaf-like inorganic films had been repeated used as nanoimprint stamps. Negative structures of lotus-leaf-like inorganic films were obtained on the polystyrene resist layers.Comment: 14 pages, 6 figure

    Structural properties and Raman spectroscopy of lipid Langmuir monolayers at the air-water interface

    Full text link
    Spectra of octadecylamine (ODA) Langmuir monolayers and egg phosphatidylcholine (PC)/ODA-mixed monolayers at the air-water interface have been acquired. The organization of the monolayers has been characterized by surface pressure-area isotherms. Application of polarized optical microscopy provides further insight in the domain structures and interactions of the film components. Surface-enhanced Raman scattering (SERS) data indicate that enhancement in Raman spectra can be obtained by strong interaction between headgroups of the surfactants and silver particles in subphase. By mixing ODA with phospholipid molecules and spreading the mixture at the air-water interface, we acquired vibrational information of phospholipid molecules with surfactant-aided SERS effect.Comment: 8 pages, 9 figure

    Dipole-tunable interfacial engineering strategy for high-performance all-inorganic red quantum-dot light-emitting diodes

    Get PDF
    All-inorganic quantum dot (QD) light-emitting diodes (AI-QLEDs) with excellent stability received enormous interest in the past few years. Nevertheless, the vast energy offset and the high trap density at the NiOX/QDs interface limit hole injection leading to fluorescence quenching and hampering the performance. Here, we present self-assembled monolayers (SAMs) with phosphonic acid (PA) anchoring groups modifying NiOX hole transport layer (HTL) to tune energy level and passivate trap states. This strategy facilitates hole injection owning to the well-aligned energy level by interface dipole, downshifting the vacuum level, reducing the hole injection barrier from 0.94 eV to 0.28 eV. Meanwhile, it mitigates the interfacial recombination by passivating surface hydroxyl group (-OH) and oxygen vacancy (VO) traps in NiOX. The electron leakage from QDs toward NiOX HTL is significantly suppressed. The all-inorganic R-QLEDs exhibit one of the highest maximum luminance, external quantum efficiency and operational lifetime of 88980 cd m−2, 10.3% and 335045 h (T50@100 cd m−2), respectively. The as-proposed interface engineering provides an effective design principle for high-performance AI-QLEDs for future outdoor and optical projection-type display applications

    Fabrication of surface-patterned ZnO thin films using sol-gel methods and nanoimprint lithography

    Full text link
    Surface-patterned ZnO thin films were fabricated by direct imprinting on ZnO sol and subsequent annealing process. The polymer-based ZnO sols were deposited on various substrates for the nanoimprint lithography and converted to surface-patterned ZnO gel films during the thermal curing nanoimprint process. Finally, crystalline ZnO films were obtained by subsequent annealing of the patterned ZnO gel films. The optical characterization indicates that the surface patterning of ZnO thin films can lead to an enhanced transmittance. Large-scale ZnO thin films with different patterns can be fabricated by various easy-made ordered templates using this combination of sol-gel and nanoimprint lithography techniques.Comment: 17 pages, 5 figures; Published in Journal of Sol-Gel Science and Technology, 201

    Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton

    Get PDF
    Highly crystalline TiO2 nanostructures were prepared through a facile inorganic acid-assisted hydrothermal treatment of hexagonal-structured assemblies of nanocrystalline titiania templated by cetyltrimethylammonium bromide (Hex-ncTiO2/CTAB Nanoskeleton) as starting materials. All samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The influence of hydrochloric acid concentration on the morphology, crystalline and the formation of the nanostructures were investigated. We found that the morphology and crystalline phase strongly depended on the hydrochloric acid concentrations. More importantly, crystalline phase was closely related to the morphology of TiO2 nanostructure. Nanoparticles were polycrystalline anatase phase, and aligned nanorods were single crystalline rutile phase. Possible formation mechanisms of TiO2 nanostructures with various crystalline phases and morphologies were proposed
    • …
    corecore